Compactness of Matrix Operators on Some Sequence Spaces Derived by Fibonacci Numbers
نویسندگان
چکیده
In this paper, we apply the Hausdorff measure of noncompactness to obtain the necessary and sufficient conditions for certain matrix operators on the Fibonacci difference sequence spaces `p(F̂ ) and `∞(F̂ ) to be compact, where 1 ≤ p <∞.
منابع مشابه
An application of Fibonacci numbers into infinite Toeplitz matrices
The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملExtension of Hardy Inequality on Weighted Sequence Spaces
Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...
متن کاملCompact operators on some Fibonacci difference sequence spaces
*Correspondence: [email protected] 1Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia 2Department of Mathematics, Aligarh Muslim University, Aligarh, 202 002, India Abstract In this paper, we characterize the matrix classes ( 1, p(F)) (1≤ p <∞), where p(F) is some Fibonacci di...
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کامل